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Layer undulations in finite samples of smecticA liquid crystals subjected to uniform
pressure and magnetic fields

I. W. Stewart
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This paper derives theoretical results for finite samples of smActiquid crystals subjected to both a
uniform pressure perpendicular to the smectic layers and a magnetic field applied in the plane of the layers or
perpendicular to them; the special case of a uniform pressure with no field present is also considered. Criteria
for suitable boundary conditions are derived for general finite sample geometries. Various critical field
strengths are discussed in relation to the resulting gridlike smectic layer undulations which arise as solutions to
the governing equation. A comparison is drawn with known results for infinite samples.
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[. INTRODUCTION which is a characteristic length of the material, of the order
of the smectic layer thickness. Following RE8], it is as-
sumed that for small displacements to the initial alignment
Ny the directorn will be given by

The objective of this paper is to extend the work of Hel-
frich [1] and Hurault[2] for infinite samples of cholesteric
liquid crystals under the influence of magnetic fields to finite
samples of smectiérliquid crystals subjected to both a uni- n~(—ug,—uy,1), |ul,luyl<1 (1.3

. . . X yr=+/ x| Yy ' '
form pressure and a magnetic field. Theoretical results for
the Helfrich-Hurault transition in infinite samples of The relevant magnetic energies when a magnetic fitlig
smecticA liquid crystals under a magnetic field are well applied parallel to thex axis or parallel to thez axis are,

known, and can be found in de Gennes and Pi8biand  respectively(Ref. [3], pp. 119 and 344
Chandrasekhd#]. SmecticA liquid crystals are layered an-

isotropic fluids. Each layer consists of long molecules whose Wyx=—3xa(n-H)2=— %Xaqui, (1.9
average molecular alignment is perpendicular to the layers.
The average alignment is denoted by the unit vextaalled Wy,= 3 xaH2(uZ+ ui), (1.9

the director. A typical sample alignment is indicated in Fig.

1, where we consider a smec#cliquid crystal in a homeo- where the constant terms have been omitted krel|H|.
tropic alignment between two plates at a distadapart in ~ Notice that there is no minus sign in E4..5). For Eq.(1.4),
the z direction, and of finite dimensiorsandb in thex and it is supposed that the diamagnetic anisotrapyis positive,
y directions, respectively. The coordinates adopted are ashich indicates that the directar “prefers” to align with
shown in Fig. 1, where the sample is confined to the volumdhe magnetic field when it is applied in tixedirection: this
Q with 0sz=<d, —a/2sx=a/2 and O<y=<b, chosen for will lead to a compression of the smectic layers. In Eg5)
convenience in discussing the solutions which arise below. lit is assumed thag,<0, in which case the director will be
is further supposed that a small uniform constant presBure repelled by a field in the direction and the layers will com-
is applied in the negative-direction as shown, and that a press. We consider separately the cases whéenparallel to
magnetic fieldH may also be present in theor z direction.  thex andz axes in Secs. Il and Il below; it turns out that a
The displacement of the layers is represented in the usuablution involving Eqg.(1.5) is easier to find since the gov-
notation by u(x,y,z). The corresponding smectik-bulk  erning equation is symmetric ir andy. The general bulk
elastic energy igignoring constant contributiopgRef. [3],

.34
p. 343 To e
B , K z - 1
S 2 A2 — ERINENNENN o
WA_2 uz+ 2 [(uxx+uyy) +4(ny uxxuyy)]v y TTT1 1111 | ||7 b—Y-"
1.1 X - a y=0
x=-2 =2
whereB is the smectic layer compression constant Krpds FIG. 1. The initial alignment of a planar sample of smeatic-

the usual elastic splay constant. Throughout, suffices denotguid crystal. The average molecular alignment is parallel tozthe
partial differentiation with respect to the variables indicated.axis and the similarly aligned molecules inherent in the smeftic-

For later convenience, the paramekeis introduced as phase form equidistant layers as shown. A uniform constant pres-
sureP is applied across the sample in the negatdirection, and
/ K a magnetic field is present in theor z direction. The sample is
A= -1 , (1.2 confined to the volumé&) where O<z=<d, —a/2<x=a/2, and 0
B <y=<h.
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equilibrium equations are given in Eq®.14) and(3.1) be-  The work done by the constant pressBrger unit area in the
low, while boundary conditions for general planar domainsxy plane on a thin layer of smecti&diquid crystal is, using
exhibiting a hinge flexibility(discussed beloware given in  Eq.(2.2),
Eqg. (2.12. d
Wp=—J Pu dQ)=—-2uy — J Pv dx dy. (2.9
Il. H PARALLEL TO x AXIS Q m™Js

The total energy integral is We now vary the integral
— | =W+ Wp, (2.5

Ky
W=f (WA+WMX)dQ=f = u 24— (uxx+uyy)
Q al?2

where the variationg(x,y) satisfy =0 onI'. We first note
that integration by parts gives
+2K 1 (UZ,— Uyylyy)
1 . 5Lv§ds= —2vaxnds (2.6)

—5 xaH?u; [dQ. (2.

since =0 for x=*a/2, and, therefore, applying the stan-
To make the problem more tractable, we assume that th@ard variation process, we obtain
layer displacements are of small amplitude, and that we can 4p

‘(_) v— _+XaH Uxx

make an approximation far of the form =_ UodJ n dS
2 1 2 2
UgdKy.8 42 (Av)*+2(viy—vxxvyy) [dS.

U= ugsin

a
q z)v(x,y), (2.2

with uy a small constant, allowing to be zero on the bound- 2.7
ariesz=0 andd. Inserting Eq.(2.2) into Eq.(2.1) gives :
L 5 5 K The variation of the second integral in E@®.7) has been

B 2 LA 1 2 2 discussed in great detail by Landau and Lifshief. [5],
w=3 duOL 2 (E) vt 5 (Av)TH 2Ky (v~ v yy) Chap. 2. Let » and 1 denote the unit outward normal 1o
and the unit tangent vector 6, respectively, and suppose
that the smectic layers are simply supporitgf] in the sense
that » must be zero o’ while d%/dv may be arbitrary. This
means that the layers are allowed to possess a “hinge” flex-
whereSis the region—a/2<x=<a/2, O<y=<bh, with bound- ibility with no displacement of". For variations which van-
ary I', andA is the usual two-dimensional Laplace operator.ish onI it can be shown thatRef. [5], p. 42, witho=—1)

1 2.2
~ 5 xaH%}|dS 2.3

1 2 2 2 . . an
5J' 5 (Av)*+2(v3,—vyayy) dS=f (A%) pdS+ 3€[Av+2(2 Sing coshv .y — SiN’ O ,x— oS fvyy) ] — d
s/ 2 s r 9
3€ dAv

WJFZ_{S”W COH(vyy— Vxy) + (COS O—SiPO)v,} | 7dl, (2.8

where @ is the angle between the axis and the outward _ _ an
normal» to T, andA? is the biharmonic operator i[AU +2(2 SinG COSAV 4y — SIMP v — COS vy, | ™ d
o a* a* =0. 2.1
A= 42—mt . 2.9 (213

axt T axPay? oy

Equations(2.10 and (2.11) are the governing equilibrium
equations orS and T, respectively. For the aforementioned
simply supported boundary conditions the terms between the
square brackets in EqR.11) equate to zero oh when(Ref.

2 4P
E(Z) U—H+XaH2vXX+K1A2v 7dS=0 [5]. p- 44
0

d
(2.10

From Egs(2.7) and(2.8), it is seen that, at equilibrium, that
is when 81 =0, we require, inS,
v do dv

J.
v=0 and

and, sincen=0 anddy/dv is arbitrary onl, av? dl ov

=0. (2.12
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Equations(2.12 are quite general for simply supported con-
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Inserting EqQ.(2.18 into Eqg. (2.19 yields the differential

ditions, and will be applicable for any shape of domain in theequation for theY,, coefficients

xy plane. In the geometry of Fig. ¥, is always a constant,

and therefore the boundary conditions which are required are

v=0 onTl,
a
vy=0 for X:ii’
vyy=0 for y=0 and b. (2.13

With the above boundary conditions, Eg.11) is automati-

cally satisfied, and therefore our attention is focused upoRyhere

the bulk equilibrium equation which arises from Eg.10.
From the arbitrariness of in S this can be written, using
Eq. (1.2, as

The problem is now reduced to solving EG.14 with the
boundary condition$2.13.

We now adapt the solution given by Timoshenief.
[6], p. 270 to suit the above boundary conditions and addi-
tional magnetic field terms, anticipating that the solution will
not be symmetrical ix andy whenH>0. (A symmetrical
Navier-type double series solution inandy for H=0 is
discussed in Sec. Ill belowThe basic method is to find a
particular solutiorv,(y) of Eq. (2.14), and add to it a gen-
eral solutionv,(x,y) of the homogeneous version of Eg.
(2.14); the full solution is then given by (x,y)=v(y)

4P
7TK1UO

T
d\

Xa

2
2 2e
A“v+ K, ) v. (2.149

2. _
H =

+vs(Xx,y). First, note that the half-range Fourier sine series

of the constant term in Eq2.14) is given by

%)

4P 16P 1 (nn-y o ]
Kimug  Kym2Ug n-f3s,. N Mo ) <Y=b.
(2.15
The seriew ((y) defined by
- nwy

|

furnishes a particular solution to E(2.14) provided the co-
efficientsP,, are
51 (]

Hencev(y) given by Egs.(2.16 and(2.17) is a particular
solution to Eq.(2.14. We now seek a solution,(x,y) of
the form

vl(y)zngsmpnsin( (2.16

b

_ 6P 1
—Kl’ﬂ'zuO ﬁ

nwr

G

b

v

dn

(2.17)

n

. _(nmy
va(xy)= 2 Yamaij;) (2.18
n=1,3,5,...
to the homogeneous equation
2 Xa o |2
A U+K—1H Uyxt a) v=0. (2.19

na\?
Y@ (x)+ i—j H2—2(T) }Yf)(x)
nar\ 4 2
+ (T + ﬁ Y,(x)=0. (2.20
The eigenvalues for Ed2.20 are
BnEYnls = BaE Yal, (2.2
, 1([[n7 4+ ka 2'1/2+ nm 2_ yaH?
Fa=a 1\ ) lan) | T\ o) “ 2k |
(2.22
223 r r]_77_44_ ki 21/2_ nm 2+XaH2
721\ o dx b 2K,
(2.23

Notice thatyﬁ is always positive, since it is assumed here
that x,>0. These eigenvalues lead to the consideration of

three main types of solution, namely, whﬂﬁ is positive,
zero, Or negative.

A. B2>0
The Bﬁ terms are positive only when

:

4
+

nwr

b

w

dn

Xa

2
<
2K,

12 [ nar) 2
+(F> (2.29

For convenience, define

Kl nmT 4 ar 21172 nmT 2)\1/2
”n:(zz[ )&l ] (5] ]) |
(2.29
Then
Bi>0
for all n only when
H<H,. (2.26

We remark that ab—c in Eq. (2.29 the critical field
strength for an infinite samplesee Ref[3], p. 363 is recov-
ered, namely,

K, m |12
HCZ(ZX_aa> . (2.27

The four forms of solution foiY,(x) are
coshB,x cosy,X, sinhB,x sin y,X, (2.28
coshB,Xx sin y,X, sinh B,x cos y,X. (2.29
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Since the full solution sought is even in the solutions for By Eq. (2.26), 82>0 for all n only whenH<H,, while y2
Y, in Eq. (2.29 can be disregarded. Hence the general soluis always positive. Therefore,
tion to EQ.(2.20 is

def{C,)#0
Y (X)=A,coshB,x cos y, X+ B,sinh 8,x sin y,Xx.
(2.30  for all n whenever
From Egs.(2.16), (2.18, and(2.30 the general solution to O<H<H;. (2.38

Eq. (2.14) is then the single series .
Hence for 6<H<H,, system(2.32 has the unique solu-

v(X,y)=va(y) +vaXy) tions
o _ Pncﬁz
=n:§’5w[Pn+Ancoshﬂnx COS X An=m, (2.39
+ B,sinh B,x sin y,x]sin ﬂ) (2.3) B :Pn_cr%l (2.40
b "~ det(Cp)’ :

where the coefficientd,, andB,, are to be determined from for eachn=1,3,5,.... The final full solution to Eq$2.13
the boundary condition&.13. A double series Navier solu- and (2.14 is now given by Eq.(2.31), with Egs. (2.17),
tion, using the form of the series in E€.4) below, can be (2,37, (2.39, and(2.40.
shown to be equivalent to the above single series solution: |n order to gain insight into the behavior of solution
shift the domain ofx to O=x=a and rewriteY,(x) in EQ.  (2.31), the first term in the series may be taken as an approxi-
(2.30 as a Fourier sine series ion this interval. In this  mation tov(x,y): therefore we look at
present case the details of eigenvalues and how critical pa-
rameters change are of relevance, and this information is V(x,y)=[P;+A;coshB;x cos y;X
explicitly available with the single series method.

Insertion ofwv(x,y) and its second derivatives into Eq.
(2.14) shows that in order to fulfill the boundary conditions
(2.13 the constant coefficients,, andB,, have to satisfy the

™

+B;sinh 8;x sin ylx]sin( by). (2.4)

equations SinceP is arbitrary in Eq.(2.17) and occurs irP,, A;, and
B,, we can suppose for the present discusgginceu is
it c[AL] [-P, arbitrary thatP, =1, and use Eqg2.33—(2.40 to calculate
21 .22/lg |~ | o | (232 vin Eqg. (2.4 numerically, and display the corresponding
Cn Cn n K .. . L.
) results. For simplicity, and clarity of exposition, we choose
where the entries in the above mat@y=(c})) are the following (in cgs unitg:
a a b=w, a=m d\=7x10"2 K;=10° y,=10".
cyl= cosk( ﬂ; c05< 7; , (2.33 ' 242
These values foK; and y, are the same as those used in
C12:Sim.<@ sin ¥nd (2.34 Ref.[3], p. 363, wheralx =2x10"1% the choice ford\ in
" 2 2 ) Eq. (2.42 will not affect the qualitative aspects of the graphs

shown below, since the effect of decreasitigis to increase

Bna Ynd B andH;. The case fod\=2x10 1°is commented
21_,p2 2 1, Y1, 1
¢ =(Bn yn)cosr( 2 /%972 upon at the end of this section.
For the values in Eq2.42),
> . [ Bna) . [¥na 23
~2Bnyn sinh ——|sin —-],  (2.39 H,=44.95. (2.43
For H approachingH; from below, consideH=40 and the
22 2 2\ - IBna . 7na .
Ch=(Bn— vn)sin 5> |sin = corresponding values
— — — —2
B.a .2 B1=3.24, y,=9.46, A;=2.00<x10 4,
+2Bqyncosh) —-jcog —5-]. (239 B,=1.27x 103, (2.44)
The determinant o€, is We can assume is arbitrary, and examine the displace-
ment in thez=d/2 midplane in order to gain insight into the
_ Bna Ynd full solution. The resulting approximate displacement
de(Cy) =28y vy cosit 2 cos’ 2 V(x,y) is given as a surface plot in Fig(a&, with the cor-
responding contour plot drawn in the lowry plane. The
L sini? Bna Sir? Yn@ (2.37) greatest displacement occursyat 7w/2 where, as can be seen
2 2 ' in the figure, the oscillatory behavior of the solution becomes
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B. B=0, B3>0,n=2

Clearly, detC,) is first zero whem=1 andB;=0 atH
=H,. Forn=2 the solutions remain in the same form as in
Egs.(2.32—(2.40. At H=H, there are two repeated eigen-

5]

107 values= y;i, and hence the solutions which are even are
0.5 1 .
COSy1X, X SinyiX. (2.495
Z 00
0.5 1 Therefore the corresponding solution to E2.41)) is
-1.01
. [Ty
-1.5° V(X,y)=[P;+A;c0o8y;x+B;X smylx]sm(F) .
15
-1.0

(2.49

As in Eg. (2.32, the matrix of coefficientC, is formed
whose entries in this case are

cilzcos(%a , (2.4
c}zzg sin %a , (2.48
cl=— yico{ %a , (2.49
c52=2ylcos(%a —aTﬁ in %a , (2.50
with the determinant
def(C,)= 2'ylco§<%a) . (2.5

With these values;A; andB; are given by Eqgs(2.39 and
(2.40. Also, the solution given by Eq$2.46—(2.50 can be
obtained by carefully taking the limit 88— 0 in Eq.(2.4])
using Egs(2.33—-(2.40. At H=H; we have

,81:0, '}/121000, A1:0997, BJ_ZSOO
(2.52

There is the possibility that d&l()=0 for certain values of
H. However, for the parameters discussed here Gdpt0.

FIG. 2. Surface and contour plots for the approximating solutionA9ain, P1=1 is chosen for convenience, and the resulting
V(x.y), given by Eq.(2.41), to the layer displacement for the ~ Plots for Eq.(2.46 are shown in Fig. @). As before, the
parameters in Eq2.42 with P,=1. The magnetic fiel# is par-  largest amplitude of the undulations occurs near the bound-
allel to the x axis. (@ H=40, (b)) H=H,=44.95, and(c) H  aries atx=* 7/2.
=45.166. In all three plots the largest amplitude of the undulations
occurs near the boundariesxat = /2.

C. Bi<0, B2>0,n=2
For H>H, the eigenvalues at=1 for Eq.(2.20 are

most apparent. The number of “peaks” and “troughs” is (1Bl Eypi, (=|Bl=vyi, (2.53
approximatelyy,;. This is to be expected since for a given

value ofH the period of the oscillatory terms isn2y; and,  the other eigenvalues remaining the same as in(EQ1)
because— w/2<x=< /2, the number of oscillations is ap- provided

proximately y4/2. The largest amplitude of the undulations

occurs near the boundaries»at +a/2= * /2. H<H;=46.777. (2.549
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Using an identical approach to that in Sec. Il A above, this |B1/=0.705, v;=10.025,

leads to a solution of the form in EqR.31) except that the

term forn=1 in the series is replaced by A;=0.982, B;=15.930. (2.63
V(x,y)=[P;+A;cog|B41]|x)cos y;x For these values, witP,=1, the approximating solution is

plotted in Fig. Zc) where again the largest amplitude of the
+B,sin(| By|x)sin ylx]sin(w—y). (2.59 undulations occurs near the boundariesxat=* /2. For
b B,=0 andn=2, the procedure above far=1 can be re-
peated for each term in the series soluti@31), but the
As before, the matrixC, is calculated from the boundary details are omitted since the dominating behavior for the full
conditions and found to have the entries series solution is expected to be the first ternmatl.
It is worth remarking that the form of the solution changes
11 { |ﬁl|a { v1a
c; =co co§ —-

(2.56 smoothly asH increases throughi,, because the form in
2 ' Eq. (2.46 can be obtained as a limit &—H, from above
or below. The solution only breaks down whidireaches the

3

1 . [lBila)  [ra value for which detC,) first equals zero, as in E{R.62: as
Cr=sin — | (257 4 approaches such a value the amplitude of the oscillatory
terms tends to infinity. The solutions in Fig. 2 display what is
” (1Bia) [ via essentially a one-dimensional pattern alongtidirection.
ci =284 ylsm( T)sm - In all of the examples above\ =X 10 2. For a more

physically relevant value we can taka =2x10 1 to find
) |B1]a yia that, with the other values remaining the same as in Eg.
—(|Ba)?+ 71)005( > ) S( ) (2589  (2.42, H,~560 499=56.04 99 kG. In this case, fo1 close
to H,, for exampleH =560 400,y,~1.25x 10°, indicating
v.a that there are many more oscillations than those appearing in
1
S(T
1B}
=B+ vf)sm( 5 |si

2

|B1la

C§2:2|’31|71005<T co the figures presented above, but that the qualitative aspects

remain identical. Further, the critical fie(@.27) discussed in
Ref.[3] for an infinite sample is approximately that given by
., (2,59 H, in this case.

2

with lll. H PARALLEL TO THE zAXIS

WhenH is parallel to thez axis, the analysis of Sec. Il can
be repeated up to Ed2.14) with the magnetic field term
being replaced by that resulting fromy, in Eq. (1.5). The
equation to be solved is therefore

via

2

de(Cy)=2|B4| 71 >

cos’-( |,81|a) cog

a a
—sir? |1l sire| 22 (2.60 5
2 2 PO TS A (i P
i v Kl (UXX vyy)_ ’7TK1UO d)\ v ’
The values forA; andB; are now given by these results and
Egs.(2.39 and(2.40. We first observe that with x,<0. The equation is symmetric imandy, and the
solution is expected to reflect this property. For simplicity
de(C,)=0 therefore we shift the coordinate bya/2 so that the bound-
ary conditions(2.13 become
whenever
v=0 onT,
o
Bil+71=(2k=1) =, k=123... (260 bo=0 for x=0a,
When Egs.(2.6]) hold, system(2.32 remains consistent at vyy=0 for y=0pb. 3.2

n=1, but includes an indeterminacy since one of the con-

stantsA, or B; can be chosen arbitrarily. Also, both the A Navier-type solution will now be sougfiRef.[6], p. 272.
coefficientsA; andB, diverge asH approaches the first zero We begin by writing the constant term (8.1) as the double
for det(C,) aboveH,. For the same values discussed abovehalf-range Fourier series

in Eq. (2.42, . .
q.(2.42 4P 64P s > 1  [mmx
de(C,)=0 when H=45.349, (2.62 Kimly  KymiUg n-fis. mShs. mn-m a

and for an example we therefore consitlet 45.166, which

is aboveH, but below the first value for which the d€)

=0; also,H<Hj3 given by Eq.(2.59 in this case. For this

value ofH we have The series

X sin
b

nmwy
—) 0<x<a, 0<y<b. (3.3
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- - marx nw
oxy)= % > Amnsin(—)sin(—y),
n=135,.m=135,.. a b o.oooosl
(3.9
. . . . . 0.00004 4
when inserted with Eq(3.3) into Eq. (3.1, is a solution
satisfying the boundary conditior{8.2), provided Z  0.00002 1
64P 1 mm\2 (nm)?]|? 77)2 0.00000 -
= — || —| +|=] | +|=—
MK U mn a b d\ -0.00002 4
2 21 -1
Xa o (MT nw -0.00004 “
+22 —| +|—= . : 0.0
K1 "= b ) ] 39 '

The coefficient ofA,,, becomes singular as a function Idf

whenH satisfies
2 o \2 2
*(J) *(

The minimum value of the right-hand side of E§.6) with
respect tan andn occurs when

2 nar 2
{5 -
In general, Eq(3.7) will not be satisfied by any integers
andn, but the terms in the series which will have maximum
amplitude can be determined from the valuesnmofand n
which give the closest approximation to E(.7). Also,

when Eq.(3.7) holds, the critical value oH is found, from
Eq. (3.6), to be
|

which is the critical-field result analogous to Eg.27) for
an infinite sample.

As an example we take the values in E8.42), except
that y,=—10"7, to find that the(odd values ofm andn
which give the closest approximation td\ =100 are

2
+

mar

a

nw

b

mar

a

Xa 2_

nﬂ.)Z -1
K_l = JR—

b

(3.9

mar

a

3.7

12

—2— = , (3.9

Xa d\

m=n=7, (3.9

indicating that the term involving\,; contains the dominant
modes a$1 approaches Ed3.8) from below. Since E(3.7)

is not identically satisfied for these particular values, the so-

lution is actually valid untilH finally satisfies Eq(3.6) for
m=n=7, which is slightly above the value given by Eq.
(3.9). Here H.=44.7214, while the solution actually be-
comes singular atl =44.7259. As in Sec. Il, we examine the
solution around the midplare=d/2. The sum of the first ten
terms in the solution serig8.4) with Eq. (3.5) are plotted as
surfaces and contour plots for

_64p
Kl

(3.10

Up

for three values ofH. Figure 3a) shows this solution foH
=0, and Fig. &) is the solution forH=42.2719, which is
belowH,. Figure 3c) is the solution foH=H_.=44.7214.

0.0006
0.0004 1
0.0002 1
0.0000 1
-0.0002
-0.0004 1
-0.0006 7

FIG. 3. Surface and contour plots for the sum of the first ten
terms in the series solutidB.4) representing the layer displacement

u at the midplane=d/2 for uy given by Eq.(3.10. The parameters
are as in Eq(2.42), except thaty,= — 10 7. The magnetic field is
parallel to thez direction with O<x<a and Osy=<b. (a) H=0, (b)
H=42.2719, andlc) H=H_ =44.7214. In all of these plots the
largest amplitude of the undulations occurs near the four corners in
the xy plane. In(c), for these parameters, there is &7 contour
grid, corresponding to the dominant mode containikg in Eq.
(3.4), as discussed in the text.

occurs near the four corners in thgplane. AtH=H_ there

is an approximate two-dimensional gridlike pattern reminis-
cent of the square-grid pattefeee Ref[4], p. 282, for ex-
perimental observations by Rondelézduced by a magnetic

In all of these plots the largest amplitude of the undulationdield in cholesteric liquid crystals, first proposed theoretically
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by Helfrich[1] and Huraul{2]. As commented upon in Sec. be analyzed in an identical fashion to that presented here by
Il a typical, more physically meaningful, value df\ =2 introducing a suitable single or double half-range Fourier
x 10" 10 lends itself to a similar analysis, the only difference series forP to replace Eqs(2.15 or (3.3). Analytical work is
being the much greater number of grids appearingdagp-  currently in progress by the author for various formsPof
proacheH. . using the techniques employed by Timosheh&pbfor con-
centrated loads on rectangular plates. It should also be men-
IV. DISCUSSION tioned that layer undulations in smec#diquid crystals may
be induced via a dilation of the layers imposed by mechani-
Figures 2 and 3 graphically summarize the results for theg| tension3,4]. Also, Ribotta and DuranfB] have experi-
layer displacement of a homeotropically aligned sample of mentally observed smectigdiquid crystals under dilation or
smecticA liquid crystal confined to a finite geometry and compression, and found two possible forms of instability:
subjected to a uniform constant presséend an applied yndulation of the layers or molecular tilt within the layers.
magnetic field. Figure 2 represents an approximate solution A natural extension to the work presented here is to con-
to u in the z=d/2 midplane of the sampléor the geometry  sider the smecti€ phase where the directoris tilted at an
depicted in Fig. 1, whereH is in the plane of the layers in angleg (the smectic cone angléo the layer norma3]. The
the x direction, andy,>0. In Fig. 3,H is in thez direction  onset of layer deformations in nonchiral smedidiquid
(perpendicular to the layersand x,<0. The effect of in-  crystals induced by an electric field in the absence of external
creasing the magnitude of the magnetic field has been showtessure has been examined theoretically by Kedney and
in these graphs via the equations discussed in Secs. Il and Istewart 9] using the smectic continuum theory of Leslie and
Figure 2 has contour patterns along théirection, and Fig.  co-workers[10,11]. In Ref.[9] the layer structure cannot be
3 has grid contour patterns in the plane. The solutions as easily visualized as in this present paper, due to the ap-
were shown to change mathematical formHageached cer-  proximations used from the nonlinear theory in Refs0,
tain critical values, depending on the physical parametersi], although an approximate critical threshold for the onset
These results share similar features to those presented lgy layer undulations can be derived. A recent nonlinear
Fukuda and Onukj7], who numerically examined the dy- theory which allows layer dilation and compression has been
namics of layer undulation instabilities in samples of proposed by McKay and Lesligl2] in an attempt to gain
smecticA liquid crystals(infinite in thex andy directions ~ more information on the static layer structure of compress-
induced by an external field; square-grid patterns occur agple smecticE liquid crystals in a homeotropic alignment.
the dynamical system progresses to its final state when thguch an alignment under an ac electric field has been studied
field is perpendicular to the layers, while a one-dimensionakxperimentally by Ruan, Sambles, and Towl&8], who re-
pattern occurs when the field is parallel to the layers. ported an increase in the smectic cone angle for sméktic-
The assumption of simply supported boundary conditionsjiquid crystals, but not a Helfrich-type effect. Layer relax-
which lead to the boundary equations in E2.12), can per-  ations of chevrons in smect@* liquid crystals and layer
haps be relaxed to incorporate variations which do not necgndulations in the dilative mode, based upon a continuum
essarily satisfyn=0 on the boundanf’; this introduces theory of compressible smectics, has been investigated by
more intricate mathematics and other forms of variations ar@/ukai and Nakagaw#l4] for a “bookshelf’ geometry. An
currently being investigated. The physical boundaries imanalysis of the type presented here may well be of interest
smectic samples are well known to be much more compleXor the smectic problems examined in these references when

than those presented here due to defects and focal coniasxternal pressure terms are incorporated into the models.
Nevertheless, at a small distance from the actual boundary

the smect@c_l!quid crystal may well behave as though it. has a ACKNOWLEDGMENTS

hinge flexibility near the boundary, so that, mathematically,

the boundary conditions proposed in this paper have some The author wishes to express his thanks to G. J. Barclay

physical significance. and J. E. Kidd for their valuable comments on this and re-
Pressure, for example, applied over a smgltegion can lated work on smectic undulations.
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