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Layer undulations in finite samples of smectic-A liquid crystals subjected to uniform
pressure and magnetic fields

I. W. Stewart
Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, United King

~Received 12 June 1998!

This paper derives theoretical results for finite samples of smectic-A liquid crystals subjected to both a
uniform pressure perpendicular to the smectic layers and a magnetic field applied in the plane of the layers or
perpendicular to them; the special case of a uniform pressure with no field present is also considered. Criteria
for suitable boundary conditions are derived for general finite sample geometries. Various critical field
strengths are discussed in relation to the resulting gridlike smectic layer undulations which arise as solutions to
the governing equation. A comparison is drawn with known results for infinite samples.
@S1063-651X~98!07211-0#

PACS number~s!: 61.30.Cz, 87.22.2q
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I. INTRODUCTION

The objective of this paper is to extend the work of H
frich @1# and Hurault@2# for infinite samples of cholesteri
liquid crystals under the influence of magnetic fields to fin
samples of smectic-A liquid crystals subjected to both a un
form pressure and a magnetic field. Theoretical results
the Helfrich-Hurault transition in infinite samples o
smectic-A liquid crystals under a magnetic field are we
known, and can be found in de Gennes and Prost@3# and
Chandrasekhar@4#. Smectic-A liquid crystals are layered an
isotropic fluids. Each layer consists of long molecules wh
average molecular alignment is perpendicular to the lay
The average alignment is denoted by the unit vectorn, called
the director. A typical sample alignment is indicated in F
1, where we consider a smectic-A liquid crystal in a homeo-
tropic alignment between two plates at a distanced apart in
thez direction, and of finite dimensionsa andb in thex and
y directions, respectively. The coordinates adopted are
shown in Fig. 1, where the sample is confined to the volu
V with 0<z<d, 2a/2<x<a/2 and 0<y<b, chosen for
convenience in discussing the solutions which arise below
is further supposed that a small uniform constant pressuP
is applied in the negative-z direction as shown, and that
magnetic fieldH may also be present in thex or z direction.
The displacement of the layers is represented in the u
notation by u(x,y,z). The corresponding smectic-A bulk
elastic energy is~ignoring constant contributions! ~Ref. @3#,
p. 343!

wA5
B̄

2
uz

21
K1

2
@~uxx1uyy!

214~uxy
2 2uxxuyy!#,

~1.1!

whereB̄ is the smectic layer compression constant andK1 is
the usual elastic splay constant. Throughout, suffices de
partial differentiation with respect to the variables indicate
For later convenience, the parameterl is introduced as

l5AS K1

B̄
D , ~1.2!
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which is a characteristic length of the material, of the ord
of the smectic layer thickness. Following Ref.@3#, it is as-
sumed that for small displacements to the initial alignm
n0 the directorn will be given by

n'~2ux ,2uy,1!, uuxu,uuyu!1. ~1.3!

The relevant magnetic energies when a magnetic fieldH is
applied parallel to thex axis or parallel to thez axis are,
respectively~Ref. @3#, pp. 119 and 344!,

wMx52 1
2 xa~n•H!252 1

2 xaH2ux
2, ~1.4!

wMz5
1
2 xaH2~ux

21uy
2!, ~1.5!

where the constant terms have been omitted andH5uHu.
Notice that there is no minus sign in Eq.~1.5!. For Eq.~1.4!,
it is supposed that the diamagnetic anisotropyxa is positive,
which indicates that the directorn ‘‘prefers’’ to align with
the magnetic field when it is applied in thex direction: this
will lead to a compression of the smectic layers. In Eq.~1.5!
it is assumed thatxa,0, in which case the director will be
repelled by a field in thez direction and the layers will com
press. We consider separately the cases whenH is parallel to
the x andz axes in Secs. II and III below; it turns out that
solution involving Eq.~1.5! is easier to find since the gov
erning equation is symmetric inx and y. The general bulk

FIG. 1. The initial alignment of a planar sample of smecticA
liquid crystal. The average molecular alignment is parallel to thz
axis and the similarly aligned molecules inherent in the smectiA
phase form equidistant layers as shown. A uniform constant p
sureP is applied across the sample in the negative-z direction, and
a magnetic field is present in thex or z direction. The sample is
confined to the volumeV where 0<z<d, 2a/2<x<a/2, and 0
<y<b.
5926 © 1998 The American Physical Society
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PRE 58 5927LAYER UNDULATIONS IN FINITE SAMPLES OF . . .
equilibrium equations are given in Eqs.~2.14! and ~3.1! be-
low, while boundary conditions for general planar doma
exhibiting a hinge flexibility~discussed below! are given in
Eq. ~2.12!.

II. H PARALLEL TO x AXIS

The total energy integral is

W5E
V

~wA1wMx!dV5E
V
F B̄

2
uz

21
K1

2
~uxx1uyy!

2

12K1~uxy
2 2uxxuyy!

2
1

2
xaH2ux

2GdV. ~2.1!

To make the problem more tractable, we assume that
layer displacements are of small amplitude, and that we
make an approximation foru of the form

u5u0sinS p

d
zD v~x,y!, ~2.2!

with u0 a small constant, allowingu to be zero on the bound
ariesz50 andd. Inserting Eq.~2.2! into Eq. ~2.1! gives

W5
1

2
du0

2E
S
F B̄

2 S p

d D 2

v21
K1

2
~Dv !212K1~vxy

2 2vxxvyy!

2
1

2
xaH2vx

2GdS ~2.3!

whereS is the region2a/2<x<a/2, 0<y<b, with bound-
ary G, andD is the usual two-dimensional Laplace operat
t

s

he
n

.

The work done by the constant pressureP per unit area in the
xy plane on a thin layer of smectic-A liquid crystal is, using
Eq. ~2.2!,

WP52E
V

Pu dV522u0

d

p E
S
Pv dx dy. ~2.4!

We now vary the integral

I 5W1WP , ~2.5!

where the variationsh(x,y) satisfyh50 onG. We first note
that integration by parts gives

dE
S
vx

2dS522E
S
vxxhdS ~2.6!

sinceh50 for x56a/2, and, therefore, applying the stan
dard variation process, we obtain

dI 5
1

2
u0

2dE
S
F B̄S p

d D 2

v2
4P

pu0
1xaH2vxxGh dS

1
1

2
u0

2dK1dE
S
F1

2
~Dv !212~vxy

2 2vxxvyy!GdS.

~2.7!

The variation of the second integral in Eq.~2.7! has been
discussed in great detail by Landau and Lifshitz~Ref. @5#,
Chap. 2!. Let n and 1 denote the unit outward normal toG
and the unit tangent vector toG, respectively, and suppos
that the smectic layers are simply supported@5#, in the sense
thath must be zero onG while ]h/]n may be arbitrary. This
means that the layers are allowed to possess a ‘‘hinge’’ fl
ibility with no displacement onG. For variations which van-
ish onG it can be shown that~Ref. @5#, p. 42, withs521!
dE
S
F1

2
~Dv !212~vxy

2 2vxxvyy!GdS5E
S
~D2v !hdS1 R

G
@Dv12~2 sinu cosuvxy2sin2uvxx2cos2uvyy!#

]h

]n
dl

2 R
G
F]Dv

]n
12

]

] l
$sinu cosu~vyy2vxx!1~cos2u2sin2u!vxy%Ghdl, ~2.8!
d
the
where u is the angle between thex axis and the outward
normaln to G, andD2 is the biharmonic operator

D25
]4

]x4 12
]4

]x2]y2 1
]4

]y4 . ~2.9!

From Eqs.~2.7! and~2.8!, it is seen that, at equilibrium, tha
is whendI 50, we require, inS,

E
S
F B̄S p

d D 2

v2
4P

pu0
1xaH2vxx1K1D2vGhdS50

~2.10!

and, sinceh50 and]h/]n is arbitrary onG,
R
G
@Dv12~2 sinu cosuvxy2sin2uvxx2cos2uvyy!#

]h

]n
dl

50. ~2.11!

Equations~2.10! and ~2.11! are the governing equilibrium
equations onS and G, respectively. For the aforementione
simply supported boundary conditions the terms between
square brackets in Eq.~2.11! equate to zero onG when~Ref.
@5#, p. 44!

v50 and
]2v
]n22

du

dl

]v
]n

50. ~2.12!
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Equations~2.12! are quite general for simply supported co
ditions, and will be applicable for any shape of domain in t
xy plane. In the geometry of Fig. 1,u is always a constant
and therefore the boundary conditions which are required

v50 on G,

vxx50 for x56
a

2
,

vyy50 for y50 and b. ~2.13!

With the above boundary conditions, Eq.~2.11! is automati-
cally satisfied, and therefore our attention is focused u
the bulk equilibrium equation which arises from Eq.~2.10!.
From the arbitrariness ofh in S, this can be written, using
Eq. ~1.2!, as

D2v1
xa

K1
H2vxx5

4P

pK1u0
2 S p

dl D 2

v. ~2.14!

The problem is now reduced to solving Eq.~2.14! with the
boundary conditions~2.13!.

We now adapt the solution given by Timoshenko~Ref.
@6#, p. 270! to suit the above boundary conditions and ad
tional magnetic field terms, anticipating that the solution w
not be symmetrical inx and y when H.0. ~A symmetrical
Navier-type double series solution inx and y for H50 is
discussed in Sec. III below.! The basic method is to find
particular solutionv1(y) of Eq. ~2.14!, and add to it a gen-
eral solutionv2(x,y) of the homogeneous version of E
~2.14!; the full solution is then given byv(x,y)5v1(y)
1v2(x,y). First, note that the half-range Fourier sine ser
of the constant term in Eq.~2.14! is given by

4P

K1pu0
5

16P

K1p2u0
(

n51,3,5,...

`
1

n
sinS npy

b D , 0,y,b.

~2.15!

The seriesv1(y) defined by

v1~y!5 (
n51,3,5,...

`

PnsinS npy

b D ~2.16!

furnishes a particular solution to Eq.~2.14! provided the co-
efficientsPn are

Pn5
16P

K1p2u0

1

n F S np

b D 4

1S p

dl D 2G21

. ~2.17!

Hencev1(y) given by Eqs.~2.16! and ~2.17! is a particular
solution to Eq.~2.14!. We now seek a solutionv2(x,y) of
the form

v2~x,y!5 (
n51,3,5,...

`

Yn~x!sinS npy

b D ~2.18!

to the homogeneous equation

D2v1
xa

K1
H2vxx1S p

dl D 2

v50. ~2.19!
e

re

n

-
l

s

Inserting Eq.~2.18! into Eq. ~2.19! yields the differential
equation for theYn coefficients

Yn
~4!~x!1F xa

K1
H222S np

b D 2GYn
~2!~x!

1F S np

b D 4

1S p

dl D 2GYn~x!50. ~2.20!

The eigenvalues for Eq.~2.20! are

bn6gni , 2bn6gni , ~2.21!

where

bn
25

1

2 H F S np

b D 4

1S p

dl D 2G1/2

1S np

b D 2

2
xaH2

2K1
J ,

~2.22!

gn
25

1

2 H F S np

b D 4

1S p

dl D 2G1/2

2S np

b D 2

1
xaH2

2K1
J .

~2.23!

Notice thatgn
2 is always positive, since it is assumed he

that xa.0. These eigenvalues lead to the consideration
three main types of solution, namely, whenbn

2 is positive,
zero, or negative.

A. bn
2>0

The bn
2 terms are positive only when

xa

2K1
H2,F S np

b D 4

1S p

dl D 2G1/2

1S np

b D 2

. ~2.24!

For convenience, define

Hn5X2 K1

xa
H F S np

b D 4

1S p

dl D 2G1/2

1S np

b D 2J C1/2

.

~2.25!

Then

bn
2.0

for all n only when

H,H1 . ~2.26!

We remark that asb→` in Eq. ~2.25! the critical field
strength for an infinite sample~see Ref.@3#, p. 363! is recov-
ered, namely,

Hc5S 2
K1

xa

p

dl D 1/2

. ~2.27!

The four forms of solution forYn(x) are

coshbnx cosgnx, sinhbnx sin gnx, ~2.28!

coshbnx sin gnx, sinhbnx cosgnx. ~2.29!
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Since the full solution sought is even inx, the solutions for
Yn in Eq. ~2.29! can be disregarded. Hence the general so
tion to Eq.~2.20! is

Yn~x!5Ancoshbnx cosgnx1Bnsinh bnx sin gnx.
~2.30!

From Eqs.~2.16!, ~2.18!, and ~2.30! the general solution to
Eq. ~2.14! is then the single series

v~x,y!5v1~y!1v2~x,y!

5 (
n51,3,5,...

`

@Pn1Ancoshbnx cosgnx

1Bnsinh bnx sin gnx#sinS npy

b D , ~2.31!

where the coefficientsAn andBn are to be determined from
the boundary conditions~2.13!. A double series Navier solu
tion, using the form of the series in Eq.~3.4! below, can be
shown to be equivalent to the above single series solut
shift the domain ofx to 0<x<a and rewriteYn(x) in Eq.
~2.30! as a Fourier sine series inx on this interval. In this
present case the details of eigenvalues and how critical
rameters change are of relevance, and this informatio
explicitly available with the single series method.

Insertion of v(x,y) and its second derivatives into Eq
~2.14! shows that in order to fulfill the boundary condition
~2.13! the constant coefficientsAn andBn have to satisfy the
equations

Fcn
11

cn
21

cn
12

cn
22G FAn

Bn
G5F2Pn

0 G , ~2.32!

where the entries in the above matrixCn5(cn
i j ) are

cn
115coshS bna

2 D cosS gna

2 D , ~2.33!

cn
125sinhS bna

2 D sinS gna

2 D , ~2.34!

cn
215~bn

22gn
2!coshS bna

2 D cosS gna

2 D
22bngn sinhS bna

2 D sinS gna

2 D , ~2.35!

cn
225~bn

22gn
2!sinhS bna

2 D sinS gna

2 D
12bngncoshS bna

2 D cosS gna

2 D . ~2.36!

The determinant ofCn is

det~Cn!52bngnFcosh2S bna

2 D cos2S gna

2 D
1sinh2S bna

2 D sin2S gna

2 D G . ~2.37!
-

n:

a-
is

By Eq. ~2.26!, bn
2.0 for all n only whenH,H1 , while gn

2

is always positive. Therefore,

det~Cn!Þ0

for all n whenever

0,H,H1 . ~2.38!

Hence for 0,H,H1 , system~2.32! has the unique solu
tions

An5
2Pncn

22

det~Cn!
, ~2.39!

Bn5
Pncn

21

det~Cn!
, ~2.40!

for eachn51,3,5,... . The final full solution to Eqs.~2.13!
and ~2.14! is now given by Eq.~2.31!, with Eqs. ~2.17!,
~2.37!, ~2.39!, and~2.40!.

In order to gain insight into the behavior of solutio
~2.31!, the first term in the series may be taken as an appr
mation tov(x,y): therefore we look at

V~x,y!5@P11A1coshb1x cosg1x

1B1sinh b1x sin g1x#sinS py

b D . ~2.41!

SinceP is arbitrary in Eq.~2.17! and occurs inP1 , A1 , and
B1 , we can suppose for the present discussion~sinceu0 is
arbitrary! thatP151, and use Eqs.~2.33!–~2.40! to calculate
V in Eq. ~2.41! numerically, and display the correspondin
results. For simplicity, and clarity of exposition, we choo
the following ~in cgs units!:

b5p, a5p, dl5p31022, K151026, xa51027.
~2.42!

These values forK1 and xa are the same as those used
Ref. @3#, p. 363, wheredl52310210; the choice fordl in
Eq. ~2.42! will not affect the qualitative aspects of the grap
shown below, since the effect of decreasingdl is to increase
b1 , g1 , andH1 . The case fordl52310210 is commented
upon at the end of this section.

For the values in Eq.~2.42!,

H1544.95. ~2.43!

For H approachingH1 from below, considerH540 and the
corresponding values

b153.24, g159.46, A152.0031022,

B151.2731023. ~2.44!

We can assumeu0 is arbitrary, and examine the displac
ment in thez5d/2 midplane in order to gain insight into th
full solution. The resulting approximate displaceme
V(x,y) is given as a surface plot in Fig. 2~a!, with the cor-
responding contour plot drawn in the lowerxy plane. The
greatest displacement occurs aty5p/2 where, as can be see
in the figure, the oscillatory behavior of the solution becom
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most apparent. The number of ‘‘peaks’’ and ‘‘troughs’’
approximatelyg1 . This is to be expected since for a give
value ofH the period of the oscillatory terms is 2p/g1 and,
because2p/2<x<p/2, the number of oscillations is ap
proximatelyg1/2. The largest amplitude of the undulation
occurs near the boundaries atx56a/256p/2.

FIG. 2. Surface and contour plots for the approximating solut
V(x,y), given by Eq.~2.41!, to the layer displacementu for the
parameters in Eq.~2.42! with P151. The magnetic fieldH is par-
allel to the x axis. ~a! H540, ~b! H5H1544.95, and~c! H
545.166. In all three plots the largest amplitude of the undulati
occurs near the boundaries atx56p/2.
B. b1
250, bn

2>0, n>2

Clearly, det(Cn) is first zero whenn51 andb150 at H
5H1 . For n>2 the solutions remain in the same form as
Eqs.~2.32!–~2.40!. At H5H1 there are two repeated eigen
values6g1i , and hence the solutions which are even inx are

cosg1x, x sing1x. ~2.45!

Therefore the corresponding solution to Eq.~2.41! is

V~x,y!5@P11A1cosg1x1B1x sing1x#sinS py

b D .

~2.46!

As in Eq. ~2.32!, the matrix of coefficientsC1 is formed
whose entries in this case are

c1
115cosS g1a

2 D , ~2.47!

c1
125

a

2
sinS g1a

2 D , ~2.48!

c1
2152g1

2cosS g1a

2 D , ~2.49!

c1
2252g1cosS g1a

2 D2
ag1

2

2
sinS g1a

2 D , ~2.50!

with the determinant

det~C1!52g1cos2S g1a

2 D . ~2.51!

With these values,A1 and B1 are given by Eqs.~2.39! and
~2.40!. Also, the solution given by Eqs.~2.46!–~2.50! can be
obtained by carefully taking the limit asb→0 in Eq. ~2.41!
using Eqs.~2.33!–~2.40!. At H5H1 we have

b150, g1510.00, A150.997, B155.00.
~2.52!

There is the possibility that det(C1)50 for certain values of
H. However, for the parameters discussed here, det(C1)Þ0.
Again, P151 is chosen for convenience, and the resulti
plots for Eq.~2.46! are shown in Fig. 2~b!. As before, the
largest amplitude of the undulations occurs near the bou
aries atx56p/2.

C. b1
2<0, bn

2>0, n>2

For H.H1 the eigenvalues atn51 for Eq. ~2.20! are

~ ub1u6g1!i , ~2ub1u6g1!i , ~2.53!

the other eigenvalues remaining the same as in Eq.~2.21!
provided

H,H3546.777. ~2.54!

n

s
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Using an identical approach to that in Sec. II A above, t
leads to a solution of the form in Eq.~2.31! except that the
term for n51 in the series is replaced by

V~x,y!5@P11A1cos~ ub1ux!cosg1x

1B1sin~ ub1ux!sin g1x#sinS py

b D . ~2.55!

As before, the matrixC1 is calculated from the boundar
conditions and found to have the entries

c1
115cosS ub1ua

2 D cosS g1a

2 D , ~2.56!

c1
125sinS ub1ua

2 D sinS g1a

2 D , ~2.57!

c1
2152ub1ug1sinS ub1ua

2 D sinS g1a

2 D
2~ ub1u21g1

2!cosS ub1ua
2 D cosS g1a

2 D , ~2.58!

c1
2252ub1ug1cosS ub1ua

2 D cosS g1a

2 D
2~ ub1u21g1

2!sinS ub1ua
2 D sinS g1a

2 D , ~2.59!

with

det~C1!52ub1ug1Fcos2S ub1ua
2 D cos2S g1a

2 D
2sin2S ub1ua

2 D sin2S g1a

2 D G . ~2.60!

The values forA1 andB1 are now given by these results an
Eqs.~2.39! and ~2.40!. We first observe that

det~C1!50

whenever

ub1u1g15~2k21!
p

a
, k51,2,3,... . ~2.61!

When Eqs.~2.61! hold, system~2.32! remains consistent a
n51, but includes an indeterminacy since one of the c
stantsA1 or B1 can be chosen arbitrarily. Also, both th
coefficientsA1 andB1 diverge asH approaches the first zer
for det(C1) aboveH1 . For the same values discussed abo
in Eq. ~2.42!,

det~C1!50 when H545.349, ~2.62!

and for an example we therefore considerH545.166, which
is aboveH1 but below the first value for which the det(C1)
50; also,H,H3 given by Eq.~2.54! in this case. For this
value ofH we have
s

-

e

ub1u50.705, g1510.025,

A150.982, B1515.930. ~2.63!

For these values, withP151, the approximating solution is
plotted in Fig. 2~c! where again the largest amplitude of th
undulations occurs near the boundaries atx56p/2. For
bn50 andn>2, the procedure above forn51 can be re-
peated for each term in the series solution~2.31!, but the
details are omitted since the dominating behavior for the
series solution is expected to be the first term atn51.

It is worth remarking that the form of the solution chang
smoothly asH increases throughH1 , because the form in
Eq. ~2.46! can be obtained as a limit asH→H1 from above
or below. The solution only breaks down whenH reaches the
value for which det(C1) first equals zero, as in Eq.~2.62!: as
H approaches such a value the amplitude of the oscilla
terms tends to infinity. The solutions in Fig. 2 display what
essentially a one-dimensional pattern along thex-direction.

In all of the examples above,dl5p31022. For a more
physically relevant value we can takedl52310210 to find
that, with the other values remaining the same as in
~2.42!, H1'560 499556.04 99 kG. In this case, forH close
to H1 , for exampleH5560 400,g1'1.253105, indicating
that there are many more oscillations than those appearin
the figures presented above, but that the qualitative asp
remain identical. Further, the critical field~2.27! discussed in
Ref. @3# for an infinite sample is approximately that given b
H1 in this case.

III. H PARALLEL TO THE z AXIS

WhenH is parallel to thez axis, the analysis of Sec. II ca
be repeated up to Eq.~2.14! with the magnetic field term
being replaced by that resulting fromwMz in Eq. ~1.5!. The
equation to be solved is therefore

D2v2
xa

K1
H2~vxx1vyy!5

4P

pK1u0
2 S p

dl D 2

v ~3.1!

with xa,0. The equation is symmetric inx and y, and the
solution is expected to reflect this property. For simplic
therefore we shift thex coordinate bya/2 so that the bound-
ary conditions~2.13! become

v50 on G,

vxx50 for x50,a,

vyy50 for y50,b. ~3.2!

A Navier-type solution will now be sought~Ref. @6#, p. 272!.
We begin by writing the constant term in~3.1! as the double
half-range Fourier series

4P

K1pu0
5

64P

K1p3u0
(

n51,3,5,...

`

(
m51,3,5,...

`
1

mn
sinS mpx

a D
3sinS npy

b D , 0,x,a, 0,y,b. ~3.3!

The series
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v~x,y!5 (
n51,3,5,...

`

(
m51,3,5,...

`

AmnsinS mpx

a D sinS npy

b D ,

~3.4!

when inserted with Eq.~3.3! into Eq. ~3.1!, is a solution
satisfying the boundary conditions~3.2!, provided

Amn5
64P

K1p3u0

1

mn H F S mp

a D 2

1S np

b D 2G2

1S p

dl D 2

1
xa

K1
H2F S mp

a D 2

1S np

b D 2G J 21

. ~3.5!

The coefficient ofAmn becomes singular as a function ofH
whenH satisfies

2
xa

K1
H25S mp

a D 2

1S np

b D 2

1S p

dl D 2F S mp

a D 2

1S np

b D 2G21

.

~3.6!

The minimum value of the right-hand side of Eq.~3.6! with
respect tom andn occurs when

S mp

a D 2

1S np

b D 2

5
p

dl
. ~3.7!

In general, Eq.~3.7! will not be satisfied by any integersm
andn, but the terms in the series which will have maximu
amplitude can be determined from the values ofm and n
which give the closest approximation to Eq.~3.7!. Also,
when Eq.~3.7! holds, the critical value ofH is found, from
Eq. ~3.6!, to be

Hc5S 22
K1

xa

p

dl D 1/2

, ~3.8!

which is the critical-field result analogous to Eq.~2.27! for
an infinite sample.

As an example we take the values in Eq.~2.42!, except
that xa521027, to find that the~odd! values ofm and n
which give the closest approximation top/dl5100 are

m5n57, ~3.9!

indicating that the term involvingA77 contains the dominan
modes asH approaches Eq.~3.8! from below. Since Eq.~3.7!
is not identically satisfied for these particular values, the
lution is actually valid untilH finally satisfies Eq.~3.6! for
m5n57, which is slightly above the value given by E
~3.8!. Here Hc544.7214, while the solution actually be
comes singular atH544.7259. As in Sec. II, we examine th
solution around the midplanez5d/2. The sum of the first ten
terms in the solution series~3.4! with Eq. ~3.5! are plotted as
surfaces and contour plots for

u05
64P

K1p3 ~3.10!

for three values ofH. Figure 3~a! shows this solution forH
50, and Fig. 3~b! is the solution forH542.2719, which is
below Hc . Figure 3~c! is the solution forH5Hc544.7214.
In all of these plots the largest amplitude of the undulatio
-

s

occurs near the four corners in thexy plane. AtH5Hc there
is an approximate two-dimensional gridlike pattern remin
cent of the square-grid pattern~see Ref.@4#, p. 282, for ex-
perimental observations by Rondelez! induced by a magnetic
field in cholesteric liquid crystals, first proposed theoretica

FIG. 3. Surface and contour plots for the sum of the first
terms in the series solution~3.4! representing the layer displaceme
u at the midplanez5d/2 for u0 given by Eq.~3.10!. The parameters
are as in Eq.~2.42!, except thatxa521027. The magnetic field is
parallel to thez direction with 0<x<a and 0<y<b. ~a! H50, ~b!
H542.2719, and~c! H5Hc544.7214. In all of these plots the
largest amplitude of the undulations occurs near the four corner
the xy plane. In~c!, for these parameters, there is a 737 contour
grid, corresponding to the dominant mode containingA77 in Eq.
~3.4!, as discussed in the text.
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by Helfrich @1# and Hurault@2#. As commented upon in Sec
II a typical, more physically meaningful, value ofdl52
310210 lends itself to a similar analysis, the only differen
being the much greater number of grids appearing asH ap-
proachesHc .

IV. DISCUSSION

Figures 2 and 3 graphically summarize the results for
layer displacementu of a homeotropically aligned sample o
smectic-A liquid crystal confined to a finite geometry an
subjected to a uniform constant pressureP and an applied
magnetic field. Figure 2 represents an approximate solu
to u in the z5d/2 midplane of the sample~for the geometry
depicted in Fig. 1!, whereH is in the plane of the layers in
the x direction, andxa.0. In Fig. 3,H is in thez direction
~perpendicular to the layers!, and xa,0. The effect of in-
creasing the magnitude of the magnetic field has been sh
in these graphs via the equations discussed in Secs. II an
Figure 2 has contour patterns along thex direction, and Fig.
3 has grid contour patterns in thexy plane. The solutions
were shown to change mathematical form asH reached cer-
tain critical values, depending on the physical paramet
These results share similar features to those presente
Fukuda and Onuki@7#, who numerically examined the dy
namics of layer undulation instabilities in samples
smectic-A liquid crystals~infinite in the x and y directions!
induced by an external field; square-grid patterns occu
the dynamical system progresses to its final state when
field is perpendicular to the layers, while a one-dimensio
pattern occurs when the field is parallel to the layers.

The assumption of simply supported boundary conditio
which lead to the boundary equations in Eq.~2.12!, can per-
haps be relaxed to incorporate variations which do not n
essarily satisfyh50 on the boundaryG; this introduces
more intricate mathematics and other forms of variations
currently being investigated. The physical boundaries
smectic samples are well known to be much more comp
than those presented here due to defects and focal co
Nevertheless, at a small distance from the actual bound
the smectic liquid crystal may well behave as though it ha
hinge flexibility near the boundary, so that, mathematica
the boundary conditions proposed in this paper have s
physical significance.

Pressure, for example, applied over a small-xy region can
e

n

n
III.

s.
by

f

s
he
l

s,

c-

re
n
x
cs.
ry
a
,
e

be analyzed in an identical fashion to that presented here
introducing a suitable single or double half-range Four
series forP to replace Eqs.~2.15! or ~3.3!. Analytical work is
currently in progress by the author for various forms ofP
using the techniques employed by Timoshenko@6# for con-
centrated loads on rectangular plates. It should also be m
tioned that layer undulations in smectic-A liquid crystals may
be induced via a dilation of the layers imposed by mecha
cal tension@3,4#. Also, Ribotta and Durand@8# have experi-
mentally observed smectic-A liquid crystals under dilation or
compression, and found two possible forms of instabili
undulation of the layers or molecular tilt within the layers

A natural extension to the work presented here is to c
sider the smectic-C phase where the directorn is tilted at an
angleu ~the smectic cone angle! to the layer normal@3#. The
onset of layer deformations in nonchiral smectic-C liquid
crystals induced by an electric field in the absence of exte
pressure has been examined theoretically by Kedney
Stewart@9# using the smectic continuum theory of Leslie a
co-workers@10,11#. In Ref. @9# the layer structure cannot b
as easily visualized as in this present paper, due to the
proximations used from the nonlinear theory in Refs.@10,
11#, although an approximate critical threshold for the on
of layer undulations can be derived. A recent nonline
theory which allows layer dilation and compression has b
proposed by McKay and Leslie@12# in an attempt to gain
more information on the static layer structure of compre
ible smectic-C liquid crystals in a homeotropic alignmen
Such an alignment under an ac electric field has been stu
experimentally by Ruan, Sambles, and Towler@13#, who re-
ported an increase in the smectic cone angle for smectC
liquid crystals, but not a Helfrich-type effect. Layer rela
ations of chevrons in smectic-C* liquid crystals and layer
undulations in the dilative mode, based upon a continu
theory of compressible smectics, has been investigated
Mukai and Nakagawa@14# for a ‘‘bookshelf’’ geometry. An
analysis of the type presented here may well be of inte
for the smectic problems examined in these references w
external pressure terms are incorporated into the models
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